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Abstract

We provide evidence that non-linear dimensionality reduction, clustering and data set parameterization can be

solved within one and the same framework. The main idea is to define a system of coordinates with an explicit

metric that reflects the connectivity of a given data set and that is robust to noise. Our construction, which is based

on a Markov random walk on the data, offers a general scheme of simultaneously reorganizing and subsampling

graphs and arbitrarily shaped data sets in high dimensions using intrinsic geometry.

We show that clustering in embedding spaces is equivalent to compressing operators. The objective of data

partitioning and clustering is to coarse-grain the random walk on the data while at the same time preserving a

diffusion operator for the intrinsic geometry or connectivity of the data set up to some accuracy. We show that the

quantization distortion in diffusion space bounds the error of compression of the operator, thus giving a rigorous

justification fork-means clustering in diffusion space and a precise measure of the performance of general clustering

algorithms.

Index Terms

Machine learning, Text analysis, Knowledge retrieval, Quantization, Graph-theoretic methods, Compression

(coding), Clustering, Clustering similarity measures, Information visualization, Markov processes, Graph algorithms

I. I NTRODUCTION

When dealing with data in high dimensions, one is often faced with the problem of how to reduce the

complexity of a data set while preserving information that is important for, for example, understanding

the data structure itself or for performing later tasks such as clustering, classification and regression.

Dimensionality or complexity reduction is an ill-posed problem until one clearly defines what one is

ready to lose. In this work, we attempt to find both a parameterization and an explicit metric that reflects
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the intrinsic geometry of a given data set. With intrinsic geometry, we here mean a set of rules that

describe the relationship between the objects in the data set without reference to structures outside of it;

in our case, we define intrinsic geometry by the connectivity of the data points in a diffusion process.

One application of this work, is manifold learning where we have a manifold, say a 2D “Swiss roll”,

embedded in a higher-dimensional space — but more generally, the problems of data parameterization,

dimensionality reduction and clustering extend beyond manifold learning to general graphs of objects that

are linked by edges with weights.

There is a large body of literature regarding the use of the spectral properties (eigenvectors and

eigenvalues) of a pairwise similarity matrix for geometric data analysis. These methods can roughly

be divided into two main categories: spectral graph cuts [1], [2], [3] and eigenmaps [4], [5], [6], [7].

The two methodologies were originally developed for different types of applications: segmentation and

partitioning of graphs versus locality-preserving embeddings of data sets, respectively. Below we briefly

review previous work and how it relates to the diffusion framework.

Suppose thatΩ = {x1, ..., xn} is a data set of points, and assume that these points form the nodes of

a weighted graph with weight functionw(x, y). In the graph-theoretic approach [8] to data partitioning,

one seeks to divide the set of vertices into disjoint sets, where by some measure, the similarity among the

vertices in a set is high, and the similarity across different sets is low. Different algorithm use different

matrices but, in general, these spectral grouping methods are based on an analysis of the dominant

eigenvectors of a suitably normalized weight matrix (see e.g. [1] for a review). If the weight function

w(x, y) satisfies certain conditions (symmetry and pointwise positivity), then one can interpret the pairwise

similarities as edge flows in a Markov random walk on the graph. In this probabilistic formulation, the

transition probability of going from pointx to y in one step is

p(x, y) =
w(x, y)∑

z∈Ω w(x, z)
.

The Normalized Cut problem provides a justification and some intuition for the use of the first non-

trivial eigenfunction of the random walk’s transition matrix [2]; the authors Shi and Malik also mention

using higher-order eigenfunctions but do not provide a theoretical justification for such an analysis. More

recently, Meila and Shi [3] have shown that the transition matrixP has piecewise constant eigenvectors

relative to a partitionS = (S1, S2, . . . , Sk) when the underlying Markov chain is lumpable with respect

to S, i.e. when one is able to group vertices together due to similarities of their transition probabilities

to the subsetsSj. The authors also define a “Modified Ncut” algorithm which, for the special case of

lumpable Markov chains, finds allk segments byk-means of the eigenvectors ofP .

Despite recent progress in the field of spectral graph theory, there are still many open questions. In

particular: What is the intuition behind spectral clustering when eigenvectors are not piece-wise constant
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(and Markov chains are not lumpable)? Naturally occuring data sets only display, at best, approximate

lumpability; the issue then is whether we can say something more precise about the performance of various

clustering algorithms. Furthermore, for general data sets, which eigenvectors of the Markov matrix should

be considered and what is the relative importance of these? Below, we answer these questions by unifying

ideas in spectral clustering, operator compression and data set parameterization.

The problem of spectral clustering is very closely related to the problem of finding low-dimensional

locality-preserving embeddings of data sets. For example, suppose that we wish to find an embedding of

Ω in Rp according to

x 7→ f(x) = (f1(x), . . . , fp(x))

that preserves the local neighborhood information. Several algorithms, such as LLE [4], Laplacian eigen-

maps [6], Hessian eigenmaps [7], LTSA [5] and diffusion maps [9], [10], all aim at minimizing distortions

of the form Q(f) =
∑

i Qi(f) whereQi(f) is a symmetric, positive semi-definite quadratic form that

measures local variations off aroundxi. The p-dimensional embedding problem can, in these cases, be

rewritten as an eigenvalue problem where the firstp eigenvectors(f1, ..., fp) provide the optimal embedding

coordinates. The close relationship between spectral clustering and locality-preserving dimension reduction

has, in particular, been pointed out by Belkin and Niyogi. In [6], the authors show that the Laplacian of

a graph (whose eigenvectors are used in spectral cuts) is the discrete analogue of the Laplace-Beltrami

operator on manifolds, and the eigenfunctions of the latter operator have properties desired for embeddings.

However, as in the case of spectral clustering, the question of the number of eigenvectors in existing

eigenmap methods is still open. Furthermore, as the distance metric in the embedding spaces is not

explicitly defined, it is not clearhow one should cluster and partition data. The usual approach is: First

pick a dimensionk, then calculate the firstk non-trivial eigenvectors and weight these equally in clustering

and other subsequent data analysis.

The contribution of this paper is two-fold: First, we provide a unified framework for spectral data

analysis based on the idea of diffusion and put previous work in a new perspective. Our starting point is

an explicit metric that reflects the connectivity of the data set. This so called “diffusion metric” can be

explained in terms of transition probabilities of a Markov chain that evolves forward in time and is, unlike

the geodesic distance, or the shortest path of a graph, very robust to noise. Similar distance measures

have previously been suggested in clustering and data classification, see for example [11]. However, the

use of such probabilistic distance measures in data parameterization is completely new. This paper unifies

various ideas in eigenmaps, spectral cuts and Markov random walk learning (see Table I for a list of

different methods). We show that, in the diffusion framework, the defined distance measure is induced by

a non-linear embedding in Euclidean space where the embedding coordinates are weighted eigenvectors
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Methods for clustering and non-linear dim. reductiondata set parameterization?explicit metric in embedding space?

Spectral graph methods [1], [2], [3] not directly addressed no

Eigenmaps [4], [5], [6], [7] yes no

Isomap [13] yes yes

Markov random walk learning [11] no yes

Diffusion maps yes yes

TABLE I

A SIMPLIFIED TABLE OF DIFFERENT METHODS FOR CLUSTERING AND NON-LINEAR DIMENSIONALITY REDUCTION

of the graph Laplacian. Furthermore, the time parameter in the Markov chain defines the scale of the

analysis, which in turn, determines the dimensionality reduction or the number of eigenvectors in the

embedding.

The other contribution of this work is a novel approach to data partitioning and graph subsampling based

on coarse-graining the dynamics of the Markov random walk on the data set. The goal is to subsample

and reorganize the data set while retaining the spectral properties of the graph, and thus also the intrinsic

geometry of the data set. We show that in order to maximize the quality of the eigenvector approximation,

we need to minimize a distortion in the embedding space. Consequently, we are relating clustering in

embedding spaces to lossy compression of operators — which is a key idea in this work. As a by-product,

we are also obtaining a rigorous justification fork-means clustering in diffusion space. The latter method

is, by construction, useful when dealing with data in high dimensions, and can (as in any kernelk-means

algorithm [12]) be applied to arbitrarily shaped clusters and abstract graphs.

The organization of the paper is as follows. In Section II, we define diffusion distances and discuss their

connection to the spectral properties and time evolution of a Markov chain random walk. In Section III, we

construct a coarse-grained random walk for graph partitioning and subsampling. We relate the compression

error to the distortion in the diffusion space. Moreover, we introduce diffusionk-means as a technique

for distortion minimization. Finally, in Section IV, we give numerical examples that illustrate the ideas

of a framework for simultaneous non-linear dimensionality reduction, clustering and subsampling of data

using intrinsic geometry and propagation of local information through diffusion.

II. GEOMETRIC DIFFUSION AS A TOOL FOR HIGH-DIMENSIONAL DATA ANALYSIS

A. Diffusion distances

Our goal is to define a distance metric on an arbitrary set that reflects the connectivity of the points

within the set. Suppose that one is dealing with a data set in the form of a graph. When identifying

clusters, or groups of points, in this graph, one needs to measure the amount of interaction, as described
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by the graph structure, between pairs of points. Following this idea, two points should be considered to be

close if they are connected by many short paths in the graph. As a consequence, points within regions of

high density (defined as groups of nodes with a high degree in the graph), will have a high connectivity.

The connectivity is furthermore decided by the strengths of the weights in the graph. Below, we review the

diffusion framework that first appeared in [10], and put it into the context of eigenmaps, dimensionality

reduction and Markov random walk learning on graphs.

Let G = (Ω,W ) be a finite graph withn nodes, where the weight matrixW = {w(x, y)}x,y∈Ω satisfies

the following conditions:

• symmetry:W = W T , and

• pointwise positivity:w(x, y) ≥ 0 for all x, y ∈ Ω,

The way we define the weights should be completely application-driven, the only requirement being that

w(x, y) should represent the degree of similarity or affinity (as defined by the application) ofx andy. In

particular, we expectw(x, x) to be a positive number. For instance, if we are dealing with data points on a

manifold, we can start with a Gaussian kernelwε = exp (−||x− y||2/ε), and then normalize it in order to

adjust the influence of geometry versus the distribution of points on the manifold. Different normalization

schemes and their connection to the Laplace-Beltrami operator on manifolds in the large sample limit

n →∞ andε → 0 are discussed in [9].

The graphG with weights W represents our knowledge of the local geometry of the set. Next we

define a Markov random walk on this graph. To this end, we introduce the degreed(x) of nodex as

d(x) =
∑
z∈Ω

w(x, z) .

If one definesP to be then× n matrix whose entries are given by

p1(x, y) =
w(x, y)

d(x)
,

thenp1(x, y) can be interpreted as the probability of transition fromx to y in 1 time step. By construction,

this quantity reflects the first-order neighborhood structure of the graph. A new idea introduced in the

diffusion maps framework, is to capture information on larger neighborhoods by taking powers of the

matrix P , or equivalently, to run the random walk forward in time. IfP t is the tth iterate ofP , then the

entry pt(x, y) represents the probability of going fromx to y in t time steps. Increasingt, corresponds to

propagating the local influence of each node with its neighbors. In other words, the quantityP t reflects

the intrinsic geometry of the data set defined via the connectivity of the graph in a diffusion process, and

the timet of the diffusion plays the role of a scale parameter in the analysis.

If the graph is connected, we have that [8]:

lim
t→+∞

pt(x, y) = φ0(y) , (1)
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whereφ0 is the unique stationary distribution

φ0(x) =
d(x)∑
z∈Ω d(z)

.

This quantity is proportional to the degree ofx in the graph, which is one measure of the density of points.

The Markov chain is furthermore reversible,i.e., it verifies the following detailed balance condition

φ0(x)p1(x, y) = φ0(y)p1(y, x) . (2)

We are mainly concerned with the following idea: For a fixed but finite valuet > 0, we want to define

a metric between points ofΩ which is such that two pointsx and z will be close if the corresponding

conditional distributionspt(x, .) andpt(z, .) are close. A similar idea appears in [11], where the authors

consider theL1 norm ||pt(x, .)− pt(z, .)||. Alternatively, one can use the Kullback-Leibler divergence or

any other distance betweenpt(x, .) and pt(z, .). However, as shown below, theL2 metric between the

conditional distributions has the advantage that it allows one to relate distances to the spectral properties

of the random walk — and thereby, as we will see in the next section,connect Markov random walk

learning on graphs with data parameterization via eigenmaps. As in [14], we will define the “diffusion

distance”Dt betweenx andy as the weightedL2 distance

D2
t (x, z) = ‖pt(x, ·)− pt(z, ·)‖2

1/φ0
=

∑
y∈Ω

(pt(x, y)− pt(z, y))2

φ0(y)
, (3)

where the “weights” 1
φ0(x)

penalize discrepancies on domains of low density more than those of high

density.

This notion of proximity of points in the graph reflects the intrinsic geometry of the set in terms of

connectivity of the data points in a diffusion process. The diffusion distance between two points will

be small if they are connected by many paths in the graph. This metric is thus a key quantity in the

design of inference algorithms that are based on the preponderance of evidences for a given hypothesis.

For example, suppose one wants to infer class labels for data points based on a small number of labeled

examples. Then one can easily propagate the label information from a labeled examplex to the new

point y following (i) the shortest path, or (ii) all paths connectingx to y. The second solution (which is

employed in the diffusion framework and in [11]) is usually more appropriate, as it takes into account

all “evidences” relatingx to y. Furthermore, since diffusion-based distances add up the contribution from

several paths, they are also (unlike the shortest path) robust to noise; the latter point is illustrated via an

example in Section IV-B.

B. Dimensionality reduction and parameterization of data by diffusion maps

As mentioned, an advantage of the above definition of the diffusion distance is the connection to the

spectral theory of the random walk. As is well known, the transition matrixP that we have constructed
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has a set of left and right eigenvectors and a set of eigenvalues|λ0| ≥ |λ1| ≥ ... ≥ |λn−1|:

φT
j P = λjφ

T
j andPψj = λjψj ,

where it can be verified thatλ0 = 1, ψ0 ≡ 1 and thatφT
k ψl = δkl. In fact, left and right eigenvectors are

dual, and can be regarded as signed measures and test functions, respectively. These two sets of vectors

are related according to

ψl(x) =
φl(x)

φ0(x)
for all x ∈ Ω . (4)

For ease of notation, we normalize the left eigenvectors ofP with respect to1/φ0:

‖φl‖2
1/φ0

=
∑

x

φ2
l (x)

φ0(x)
= 1 , (5)

and the right eigenvectors with respect to the weightφ0:

‖ψl‖2
φ0

=
∑

x

ψ2
l (x)φ0(x) = 1 . (6)

If pt(x, y) is the kernel of thetth iterate P t, we will then have the following biorthogonal spectral

decomposition:

pt(x, y) =
∑
j≥0

λt
jψj(x)φj(y) . (7)

The above identity corresponds to a weighted principal component analysis ofP t. The first k terms

provide the best rank-k approximation ofP t, where “best” is defined according to the following weighted

metric for matrices:

‖A‖2 =
∑

x

∑
y

φ0(x)a(x, y)2 1

φ0(y)
.

Here is our main point: If we insert Equation 7 into Equation 3, we will have that

D2
t (x, z) =

n−1∑
j=1

λ2t
j (ψj(x)− ψj(z))2 .

Sinceψ0 ≡ 1 is a constant vector, it does not enter in the sum above. Furthermore, because of the decay

of the eigenvalues1, we only need a few terms in the sum for a certain accuracy. To be precise, letq(t)

be the largest indexj such that|λj|t > δ|λ1|t. The diffusion distance can then be approximated to relative

precisionδ using the firstq(t) non-trivial eigenvectors and eigenvalues according to

D2
t (x, z) '

q(t)∑
j=1

λ2t
j (ψj(x)− ψj(z))2 .

1The speed of the decay depends on the graph structure. For example, for the special case of a fully connected graph, the first eigenvalue

will be 1 and the remaining eigenvalues will be equal to 0. The other extreme case is a graph that is totally disconnected with all eigenvalues

equal to 1.
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Now observe that the identity above can be interpreted as the Euclidean distance inRq(t) if we use the

right eigenvectors weighted withλt
j as coordinates on the data. In other words, this means that if we

introduce the diffusion map

Ψt : x 7−→




λt
1ψ1(x)

λt
2ψ2(x)

...

λt
q(t)ψq(t)(x)




, (8)

then clearly,

D2
t (x, z) '

q(t)∑
j=1

λ2t
j (ψj(x)− ψj(z))2 = ‖Ψt(x)−Ψt(z)‖2 . (9)

Note that the factorsλt
j in the definition ofΨt are crucial for this statement to hold.

The mappingΨt : Ω → Rq(t) provides a parameterization of the data setΩ, or equivalently, a realization

of the graphG as a cloud of points in a lower-dimensional spaceRq(t), where the re-scaled eigenvectors are

the coordinates. The dimensionality reduction and the weighting of the relevant eigenvectors are dictated

by both the timet of the random walk and the spectral fall-off of the eigenvalues.

Equation 9 means thatΨt embeds the entire data set inRq(t) in such a way that the Euclidean distance is

an approximation of the diffusion distance. Our approach is thus different from other eigenmap methods:

Our starting points is anexplicitly defined distance metric on the data set or graph. This distance is also

the quantity we wish to preserve during a non-linear dimensionality reduction.

III. G RAPH PARTITIONING AND SUBSAMPLING

In what follows, we describe a novel scheme for subsampling data sets that — as above — preserves

the intrinsic geometry defined by the connectivity of the data points in a graph. The idea is to construct a

coarse-grained version of the original random walk on a new graphG̃ with similar spectral properties. This

new Markov chain is obtained by grouping points into clusters and appropriately averaging the transition

probabilities between these clusters. We show that in order to retain most of the spectral properties of

the original random walk, the choice of clusters in critical. More precisely, the quantization distortion in

diffusion space bounds the error of the approximation of the diffusion operator.

One application is dimensionality reduction and clustering of arbitrarily shaped data sets using geometry;

see Section IV for some simple examples. However, more generally, the construction also offers a

systematic way of subsampling operators [15] and arbitrary graphs using geometry.
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A. Construction of a coarse-grained random walk

Start by considering an arbitrary partition{Si}1≤i≤k of the set of nodesΩ. Our aim is to aggregate

the points in each set in order to coarse-grain both the state setΩ and the time evolution of the random

walk. To do so, we regard each setSi as corresponding to the nodes of ak-node graphG̃, whose weight

function is defined as

w̃(Si, Sj) =
∑
x∈Si

∑
y∈Sj

φ0(x)pt(x, y) ,

where the sum involves all the transition probabilities between pointsx ∈ Si andy ∈ Sj (see Figure 1).
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Fig. 1. Example of a coarse-graining of a graph: For a given partitionΩ = S1 ∪ S2 ∪ S3 of the set of nodes in a graphG, we define

a coarse-grained grapheG by aggregating all nodes belonging to a subsetSi into a meta-node. By appropriately averaging the transition

probabilities between pointsx ∈ Si andy ∈ Sj , for i, j = 1, 2, 3, we then compute new weightsew(Si, Sj) and a new Markov chain with

transition probabilitiesep(Si, Sj).

From the reversibility condition of Equation 2, it can be verified that this graph is symmetric, i.e. that

w̃(Si, Sj) = w̃(Sj, Si). By setting

φ̃0(Si) =
∑
x∈Si

φ0(x) ,

one can define a reversible Markov chain on this graph with stationary distributionφ̃0 ∈ Rk and transition

probabilities

p̃(Si, Sj) =
w̃(Si, Sj)∑
k w̃(Si, Sk)

=
∑
x∈Si

∑
y∈Sj

φ0(x)

φ̃0(Si)
pt(x, y) .

Let P̃ be thek × k transition matrix on the coarse-grained graph. More generally, for0 ≤ l ≤ n− 1, we

define in a similar way coarse-grained versions ofφl by summing over the nodes in a partition:

φ̃l(Si) =
∑
x∈Si

φl(x) . (10)

As in Equation 4, we define coarse-grained versions ofψl according to the duality condition

ψ̃l(Si) =
φ̃l(Si)

φ̃0(Si)
, (11)
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which is equivalent to taking a weighted average ofψl over Si:

ψ̃l(Si) =
∑
x∈Si

φ0(x)

φ̃0(Si)
ψl(x) . (12)

The coarse-grained kernelp̃(Si, Sj) contains all the information in the data regarding the connectivity

of the new nodes in the graph̃G. The extent to which the above vectors constitute approximations of the

left and right eigenvectors of̃P depends on the particular choice of the partition{Si}. We investigate this

issue more precisely in the next section.

B. Approximation error. Definition of geometric centroids

In a similar manner to Equation 5 and Equation 6, we define the norm on coarse-grained signed measures

φ̃l to be

‖φ̃l‖2
1/eφ0

=
∑

i

φ̃2
l (Si)

φ̃0(Si)
,

and on the coarse-grained test functionsψ̃l to be

‖ψ̃l‖2eφ0
=

∑
i

ψ̃2
l (Si)φ̃0(Si) .

We now introduce the definition of a geometric centroid, or a representative point, of each partitionSi:

Definition 1 (geometric centroid):Let 1 ≤ i ≤ k. The geometric centroidc(Si) of subsetSi of Ω is

defined as the weighted sum

c(Si) =
∑
x∈Si

φ0(x)

φ̃0(Si)
Ψt(x) .

The following result shows that for small values ofl, φ̃l and ψ̃l are approximate left and right

eigenvectors of̃P with eigenvalueλt
l .

Theorem 2:We have for0 ≤ l ≤ n− 1,

φ̃T
l P̃ = λt

lφ̃
T
l + el and P̃ ψ̃l = λt

lψ̃l + fl .

where

‖el‖2
1/eφ0

≤ 2D and‖fl‖2eφ0
≤ 2D ,

and

D =
∑

i

∑
x∈Si

φ0(x)‖Ψt(x)− c(Si))‖2

This means that if|λl|t À
√D then φ̃l and ψ̃l are approximate left and right eigenvectors ofP̃ with

approximate eigenvalueλt
l . The proof of this theorem can be found in Appendix .
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The previous result also shows that in order to maximize the quality of approximation, we need to

minimize the following distortion in diffusion space:

D =
∑

i

∑
x∈Si

φ0(x)‖Ψt(x)− c(Si))‖2 (13)

≈ Ei

{
EX|i

{‖Ψt(X)− c(Si))‖2|X ∈ Si

} }
,

which can also be written in terms of a weighted sum of pairwise distances according to

D =
1

2

∑
i

φ̃0(Si)
∑
z∈Si

∑
x∈Si

φ0(x)

φ̃0(Si)

φ0(z)

φ̃0(Si)
‖Ψt(x)−Ψt(z)‖2 (14)

≈ 1

2
Ei

{
EX,Z|i

{‖Ψt(X)−Ψt(Z))‖2|X,Z ∈ Si

} }
.

C. An algorithm for distortion minimization

Finally, we make a connection to kernelk-means and the algorithmic aspects of the minimization. The

form of D given in Equation 13 is classical in information theory, and its minimization is equivalent to

solving the problem of quantizing the diffusion space withk codewords based on the mass distribution of

the sample setΨt(Ω). This optimization issue is often addressed via thek-means algorithm [16] which

guarantees convergence towards a local minimum:

1) Step0: initialize the partition{S(0)
i }1≤i≤k at random in the diffusion space,

2) For p > 0, update the partition according to

S
(p)
i = {x such thati = arg min

j
‖Ψt(x)− c(S

(p−1)
j )‖2} ,

where1 ≤ i ≤ k, andc(S
(p−1)
j ) is the geometric centroid ofS(p−1)

j ,

3) Repeat point 2 until convergence.

A drawback of this approach is that each center of mass{c(Si)} may not belong to the setΨt(E) itself.

This can be a problem in some applications where such combinations have no meaning, such as in the

case of gene data. In order to obtain representatives{ci} of the clusters that belong to the original setE,

we introduce the following definition of diffusion centers:

Definition 3 (diffusion center):The diffusion centeru(S) of a subsetS of Ω is any solution of

arg min
x∈Ω

‖Ψt(x)− c(S)‖2 .

This notion does not define a unique diffusion center, but it is sufficient for our purpose of minimizing

the distortion. Note thatu(S) is a generalization of the idea of center of mass to graphs.

Now, if {Si} is the output of thek-means algorithm, then we can assign to each point inSi the

representative centeru(Si). In that sense, the graph̃G is a subsampled version ofG that, for a given value

of k, retains the spectral properties of the graph. The analysis above provides a rigorous justification for
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k-means clustering in diffusion spaces, and furthermore links our work to both spectral graph partitioning

(where often only the first non-trivial eigenvector of the graph Laplacian is taken into account) and

eigenmaps (where one uses spectral coordinates for data parameterization).

IV. N UMERICAL EXAMPLES

A. Importance of learning the nonlinear geometry of data in clustering

In many applications, real data sets exhibit highly nonlinear structures. In such cases, linear methods

such as Principal Components will not be very efficient for representing the data. With the diffusion

coordinates, however, it is possible to learn the intrinsic geometry of data set, and then project the data

points into a non-linear coordinate space with a diffusion metric. In this diffusion space, one can use

classical geometric algorithms (such as separating hyperplane-based methods,k-means algorithms, etc.)

for unsupervised as well as supervised learning.

To illustrate this idea, we study the famous Swiss roll. This data set is intrinsically a surface embedded

in 3 dimensions. In this original coordinate system, global extrinsic distances, such as the Euclidean

distance, are often meaningless as they do not incorporate any information on the structure or shape of

the data set. For instance, if we run thek-means algorithm for clustering withk = 4, the obtained clusters

do not reflect the natural geometry of the set. As shown in Figure 2, there is some “leakage” between

different parts of the spiral due to the convexity of thek-means clusters in the ambient space.
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Fig. 2. The Swiss roll, and its quantization byk-means (k = 4) in the original coordinate system (left) and in the diffusion space (right).

As a comparison, we also show in Figure 2 the result of running thek-means algorithm in diffusion

space. In the latter case, we obtain meaningful clusters that respect the intrinsic geometry of the data set.
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B. Robustness of the diffusion distance

One of the most attractive features of the diffusion distance is its robustness to noise and small

perturbations of the data. In short, its stability follows from the fact that it reflects the connectivity

of the points in the graph. We illustrate this idea by studying the case of data points approximately lying

on a spiral in the two-dimensional plane. The goal of this experiment is to show that the diffusion distance

is a robust metric on the data, and in order to do so, we compare it to the shortest path (or geodesic)

distance that is employed in schemes such as ISOMAP [13].

We generate 1000 instances of a noisy spiral in the plane, each corresponding to a different realization

of the random noise perturbation (see Figure 3). From each instance, we construct a graph by connecting

all pairs of points at a distance less than a given thresholdτ , which is kept constant over the different

realizations of the spiral. The corresponding adjacency matrixW contains only zeros or ones, depending

on the absence or presence of an edge, respectively. In order to measure the robustness of the diffusion

distance, we repeatedly compute the diffusion distance between two points of referenceA and B in all

1000 noisy spirals. We also compute the geodesic distance between these two points using Dijkstra’s

algorithm.
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Fig. 3. Two realizations of a noisy spiral with points of referencesA andB. Ideally, the shortest path betweenA andB should follow the

branch of the spiral (left). However, some realizations of the noise may give rise to shortcuts, thereby dramatically reducing the length of

the shortest path (right).

As shown in Figure 3, depending on the presence of shortcuts arising from points appearing between

the branches of the spiral, the geodesic distance (or shortest path length) betweenA and B may vary

by large amounts from one realization of the noise to another. The histogram of all geodesic distances
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measurements betweenA andB over the 1000 trials is shown on Figure 4. The distribution of the geodesic

distance appears poorly localized, as its standard deviation equals 42% of its mean. This indicates that

the geodesic distance is extremely sensitive to noise and thus unreliable as a measure of distance.

0 0.5 1 1.5 2
0

50

100

Geodesic distance

0 0.5 1 1.5 2
0

50

100

Diffusion distance

Fig. 4. Distribution of the geodesic (top) and diffusion (bottom) distances. Each distribution was rescaled in order to have a mean equal

to 1.

The diffusion distance, however, is not sensitive to small random perturbations of the data set because,

unlike the geodesic distance, it represents an average quantity. More specifically, it takes into account all

paths of length less than or equal tot that connectA andB. As a consequence, shortcuts due to noise

will have little weight in the computation, as the number of such paths is much smaller than the number

of paths following the shape of the spiral. This is also what our experiment confirms: Figure 4 shows

the distribution of the diffusion distances betweenA andB over the random trials. In this experiment,t

was taken to be equal to600. The corresponding histogram shows a very localized distribution, with a

standard deviation equal to only7% of its mean, which translates into robustness and consistency of the

diffusion distance.

C. Organizing and clustering words via diffusion maps

Many of the ideas in this paper can be illustrated with an application to word-document clustering. We

here show how we can measure the semantic association of words using diffusion distances, and how we

can organize and form representative meta-words using diffusion maps and thek-means algorithm.

Our starting point is a collection ofp = 1161 Science News articles. These articles belong to8 different

categories (see [17]). Our goal is to cluster words based on their distribution over the documents. From
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the database, we extract the 20 most common words in each document, which corresponds to 3218 unique

words total. Out of these words, we then select words with an intermediate document conditional entropy.

The conditional entropy of a documentX given a wordy is defined asHX|y = −∑
x p(x|y) log p(x|y).

Words with a very low entropy occur, by definition, in few documents and are often not good descriptors

of the database, while high-entropy words such as “it”, “if”, “and”, etc. can be equally uninformative.

Thus, in our case, we choose a set ofN = 1004 words with entropy2 < H(X|y) < 4. As in [17], we

calculate the mutual information between documentx and wordy according to

mx, y = log

(
fx, y∑

ξ fξ, y

∑
η fξ,η

)
,

wherefx,y = cx,y/N , and cx,y is the number of times wordw appears in documentx. In the analysis

below, we describe wordy in terms of thep-dimensional feature vector

ey = [m1, y,m2, y, . . .mp, y] .

Our first task is to find a low-dimensional embedding of the words. We form the kernel

w(ei, ej) = exp

(
−||ei − ej||2

σ2

)
,

and normalize it, as described in Section II-A, to obtain the diffusion kernelpt(ei, ej). We then embed the

data using the eigenvaluesλt
k and the eigenvectorsψk of the kernel (see Equation 8). As mentioned, the

effective dimensionality of the embedding is given by the spectral fall-off of the eigenvalues. Forσ = 18

andt = 4, we have that(λ10/λ1)
t < 0.1, which means that we have effectively reduced the dimensionality

of the originalp-dimensional problem, wherep = 1161, with a factor of about1/100. Figure 5 shows the

first two coordinates in the diffusion map; Euclidean distances in the figure only approximately reflect

diffusion distances since higher-order coordinates are not displayed. Note that the words have roughly been

rearranged according to their semantics. Starting to the left, moving counter-clockwise, we have words

that, respectively, express concepts in medicine, social sciences, computer science, physics, astronomy,

earth sciences and anthropology.

Next, we show that the original1004 words can be clustered and grouped into representative “meta-

words” by minimizing the distortion in Equation 13. Thek-means algorithm withk = 100 cluster leads

to the results in Figure 5. Table II furthermore gives some examples of diffusion centers and words in

a cluster. The diffusion centers or “meta-words” form a coarse-grained representation of the word graph

and can, for example, be used as conceptual indices for document retrieval and document clustering. This

will be discussed in later work.
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Diffusion center All other words in cluster

psychiatric depression, psychiatrist, psychologist

talent award, competition, finalist, intel, prize, scholarship, student, winner

laser beam, nanometer, photon, pulse, quantum

velocity detector, emit, infrared, ultraviolet

gravitational bang, cosmo, gravity, hubble

orbiting jupiter, orbit, solar

geologic beneath, crust, depth, earthquake, ice, km, plate, seismic, trapped, volcanic

warming climate, el, nino, pacific, weather

underwater atlantic, coast, continent, floor, island, marine, seafloor, sediment

ecosystem algae, drought, dry, ecologist, extinction, forest, gulf, lake, pollution, river

farmer carolina, crop, fish, florida, insect, nutrient, pesticide, pollutant,

soil, tree, tropical, wash, wood

virus aids, allergy, hiv, resistant, vaccine, viral

cholesterol aging, artery, fda, insulin, obesity, sugar, vitamin

TABLE II

EXAMPLES OF DIFFUSION CENTERS AND WORDS IN A CLUSTER

V. D ISCUSSION

In this work, we provide evidence that clustering, graph partitioning and data set parameterization can

be solved within one and the same framework. Our starting point is to find a meaningful representation

of the data, and toexplicitly define a distance metric on the data. Here we propose using a system of

coordinates and a metric that reflects the connectivity of the data set. By doing so, we lay down a solid

foundation for subsequent data analysis.

All the geometry of the data set is captured in a diffusion kernel. However, unlike SVM and so called

“kernel methods” [18], [19], [20], we are working with the embedding coordinates explicitly. Our method

is completely data driven: both the data representation and the kernel are computed directly on the data.

The notion of a distance allows us to more precisely define our goals in clustering and dimensionality

reduction. In addition, the diffusion framework makes it possible to directly connect grouping in embedding

spaces to spectral graph clustering and data analysis by Markov chains [21], [11].

In a sense, we are extending Meila and Shi’s work [3] from lumpable Markov chains and piece-wise

constant eigenvectors to the general case of arbitrary Markov chains and arbitrary eigenvectors. The key

idea is to work with embedding spaces directly and also to take powers of the transition matrix. The time

parametert sets the scale of the analysis. Note also that by using different values oft, we are able to

perform a multiscale analysis of the data [22], [23].

Our other contribution is a novel scheme for simultaneous dimensionality reduction, parameterization
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Fig. 5. Embedding andk-means clustering of 1004 words fort = 4 andk = 100. The colors correspond to the different word clusters,

and the text labels the representative diffusion center or “meta-word” of each word cluster. Note that the words are automatically arranged

according to their semantics.

and subsampling of data sets. We show that clustering in embedding spaces is equivalent to compressing

operators. As mentioned, the diffusion operator defines the geometry of our data set. There are several

ways of compressing a linear operator, depending on what properties one wishes to retain. For instance,

in [22], the goal is to maintain sparseness of the representation while achieving the best compression rate.

On the other hand, the objective in our work is to cluster or partition a given data set while at the same

time preserving the operator (that captures the geometry of the data set) up to some accuracy. We show

that, for a given partitioning scheme, the corresponding quantization distortion in diffusion space bounds

the error of compression of the operator. This gives us a precise measure of the performance of clustering

algorithms. To find the best clustering, one needs to minimize this distortion, and thek-means algorithm

is one way to achieve this goal. Another aspect of our approach is that we are coarse-graining a Markov
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chain defined on the data, thus offering a general scheme to subsample and parameterize graphs based

on intrinsic geometry.
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APPENDIX

In this section, we provide a proof for Theorem 2, which we recall as

Theorem 4:We have for0 ≤ l ≤ n− 1,

φ̃T
l P̃ = λt

lφ̃
T
l + el and P̃ ψ̃l = λt

lψ̃l + fl .

where

‖el‖2
1/eφ0

≤ 2D and‖fl‖2eφ0
≤ 2D ,

and

D =
∑

i

∑
x∈Si

φ0(x)‖Ψt(x)− c(Si))‖2

This means that if|λl|t À
√D then φ̃l and ψ̃l are approximate left and right eigenvectors ofP̃ with

approximate eigenvalueλt
l .

Proof: We start by treating left eigenvectors: For allz ∈ Si, we define

rij(z) = p̃(Si, Sj)− pt(z, Sj) .

Then

|rij(z)| =

∣∣∣∣∣
∑
x∈Si

φ0(x)

φ̃0(Si)
(pt(x, Sj)− pt(z, Sj))

∣∣∣∣∣

≤
∑
x∈Si

φ0(x)

φ̃0(Si)

∑
y∈Sj

|pt(x, y)− pt(z, y)|

≤
∑
x∈Si

φ0(x)

φ̃0(Si)


∑

y∈Sj

φ0(y)




1
2

∑

y∈Sj

1

φ0(y)
|pt(x, y)− pt(z, y)|2




1
2

(Cauchy-Schwarz)

≤
√

φ̃0(Sj)
∑
x∈Si

φ0(x)

φ̃0(Si)


∑

y∈Sj

1

φ0(y)
|pt(x, y)− pt(z, y)|2




1
2
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Another application of the Cauchy-Schwarz inequality yields

|rij(z)|2 ≤ φ̃0(Sj)
∑
x∈Si

φ0(x)

φ̃0(Si)

∑
y∈Sj

1

φ0(y)
|pt(x, y)− pt(z, y)|2 (15)

Thus,

∑
i

φ̃l(Si)p̃(Si, Sj) =
∑

i

∑
z∈Si

φl(z)p̃(Si, Sj)

=
∑

i

∑
z∈Si

φl(z)(pt(z, Sj) + rij(z))

= λt
lφ̃l(Sj) +

∑
i

∑
z∈Si

φl(z)rij(z)

We therefore defineel ∈ Rk by

el(Sj) =
∑

i

∑
z∈Si

φl(z)rij(z) .

To prove the theorem, we need to bound

‖el‖2
1/eφ0

=
∑

j

el(Sj)
2

φ̃0(Sj)
.

First, observe that by the Cauchy-Schwartz inequality,

el(Sj)
2 ≤

(∑
i

∑
z∈Si

φl(z)2

φ0(z)

)(∑
i

∑
z∈Si

rij(z)2φ0(z)

)
.

Now, sinceφl was normalized, this means that

el(Sj)
2 ≤

(∑
i

∑
z∈Si

rij(z)2φ0(z)

)
.

Invoking inequality (15), we conclude that

‖el‖2
1/eφ0

≤
∑

j

∑
i

∑
z∈Si

φ0(z)
∑
x∈Si

φ0(x)

φ̃0(Si)

∑
y∈Sj

1

φ0(y)
|pt(x, y)− pt(z, y)|2

≤
∑

i

∑
z∈Si

φ0(z)
∑
x∈Si

φ0(x)

φ̃0(Si)

∑
y

1

φ0(y)
|pt(x, y)− pt(z, y)|2

≤
∑

i

φ̃0(Si)
∑
z∈Si

∑
x∈Si

φ0(x)

φ̃0(Si)

φ0(z)

φ̃0(Si)
D2

t (x, z)

≤
∑

i

φ̃0(Si)
∑
z∈Si

∑
x∈Si

φ0(x)

φ̃0(Si)

φ0(z)

φ̃0(Si)
‖Ψt(x)−Ψt(z)‖2

≤
∑

i

φ̃0(Si)
∑
z∈Si

∑
x∈Si

φ0(x)

φ̃0(Si)

φ0(z)

φ̃0(Si)

×(‖Ψt(x)− c(Si)‖2 + ‖Ψt(z)− c(Si)‖2 − 2〈Ψt(x)− c(Si), Ψt(z)− c(Si)〉)
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By definition of c(Si),

∑
z∈Si

∑
x∈Si

φ0(x)

φ̃0(Si)

φ0(z)

φ̃0(Si)
〈Ψt(x)− c(Si), Ψt(z)− c(Si)〉 = 0 ,

and therefore

‖el‖2
1/eφ0

≤ 2
∑

i

∑
x∈Si

φ0(x)‖Ψt(z)− c(Si)‖2 .

As for right eigenvectors, the result follows from Equation 11 and the fact that the coarse-grained Markov

chain is reversible with respect tõφ0. Indeed,

P̃ ψ̃l(Si) =
∑

j

p̃(Si, Sj)ψ̃l(Sj)

=
∑

j

p̃(Si, Sj)

φ0(Sj)
φ̃l(Sj) by Equation 11

=
∑

j

p̃(Sj, Si)

φ0(Si)
φ̃l(Sj) by reversibility

= λt
l

φ̃l(Si)

φ̃0(Si)
+

el(Si)

φ̃0(Si)

= λt
lψ̃l(Si) +

el(Si)

φ̃0(Si)
by Equation 11.

If we setfl(Si) = el(Si)/φ̃0(Si), we conclude that

‖fl‖2eφ0
=

∑
i

el(Si)
2

φ̃0(Si)2
φ̃0(Si) = ‖el‖2

1/eφ0
≤ 2D .
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